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The perturbed hydrogen atom: some new algebraic results 

S KaisiS, M Coheni and R D Levine'TS 
i Department of Physical Chemistry, The Hebrew University, Jerusalem 91904, Israel 
$ The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University, 
Jerusalem 91904, Israel 

Received 6 October 1988 

Abstract. We have employed algebraic methods to calculate the bound-state spectra of a 
non-relativistic hydrogen atom subjected to a wide class of perturbations. Our procedure 
exploits the linearity of the complete (perturbed) Hamiltonian in the generators of the 
S 0 ( 2 , 2 )  Lie algebra which follows naturally from the separation of variables in Schrodin- 
ger's equation in parabolic coordinates. Appropriate transformations then allow the Hamil- 
tonian to be expressed as a linear combination of the compact generators of the two 
underlying SO(2, 1) algebras. We give some examples for which the bound-state spectra 
can be obtained completely analytically. 

1. Introduction 

It is well known that the Schrodinger theory for the Kepler problem can be treated 
algebraically by using irreducible unitary representations of the dynamical symmetry 
group S0(4,2)  (see, for example, Englefield 1972). Thus the bound states of the 
unperturbed non-relativistic hydrogenic Hamiltonian are described most conveniently 
in terms of two independent angular momentum vectors F and G (say) or, more 
precisely, of their sum and difference. Then, the orbital angular momentum given by 
L =  F + G, and the Runge-Lenz vector which is proportional to A = F - G, both 
commute with the system Hamiltonian, while each of the vectors F, G separately 
generates SO(4) symmetry. The corresponding treatment of some modified Coulomb 
potentials was given by Bednar (1973), who also employed algebraic methods to obtain 
approximate solutions to perturbation problems. 

Recently, there has been considerable renewed interest in algebraic solutions of 
problems involving perturbed hydrogenic ions. Thus, many authors have treated the 
hydrogen atom in a strong magnetic field (see, for example, the work of Delande and 
Gay (1984, 1986), who include many of the earlier references), while Alhassid et al 
(1987) have, in addition, considered the van der Waals interaction. 

In the present paper, we use the non-invariance Lie algebra S0(2,2)  in order to 
obtain the bound-state spectra of a hydrogen atom subjected to each of the following 
perturbations: 

(i) V = p , ,  the z component of the linear momentum; 
(ii) V = ( r2 - z2)-l, where r2 = x2 + y 2  + z2;  and 
(iii) V = z / r .  
These are all examples of operators which may ultimately be expressed as linear 

functions of the generators of SO(2, l )  Lie algebras when the complete Schrodinger 
equation is expressed in parabolic coordinates. Our procedure then exploits the 
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possibility of performing transformations, or rotations, through appropriately chosen 
tilting angles, so as to diagonalise the compact generator r3 of SO(2,l)  (cf Wybourne 
1974). A similar procedure was followed by Benjamin and Levine (1986) in their 
treatment of resonances in a simple model of e-H- scattering. 

2. Choice of the tilting angles 

For simplicity, we suppose that the complete system Hamiltonian (including perturba- 
tions) may be expressed as a direct sum 

H = H(’) + p), (1) 

k = l , 2  (2) 

where the coefficients {dk’} are scalars, and the two sets of generators r:k) ( i  = 1,2,3; 
k = 1,2) each separately satisfies the usual SO(2, l )  commutation relations (for sim- 
plicity of presentation, we suppress the superscript k): 

Here, each of the non-interacting H ( k )  (k  = 1,2) is of the form 
~ ( k )  = a ( k ) r ( k )  + b ( k ) r $ k )  + C ( k ) r ( k )  

3 

[r,, r,] = -iT3 [ r 2 ,  r3l= i r i  [ r 3 , r 1 ] = i r 2 .  (3) 

We now employ the wefl known Campbell-Hausdorff formula: 

(4) 
1 

2! 
e-AB eA = B + [ B ,  A ] + -  [ [ B ,  A ] ,  A ] + .  . . 

and 

rl sinh e + r3 cosh e. (6) e-i@rzr3 eier, = 

Then 
fi = e-ie,r,H eie,r, 

= ( a  cosh el + c sinh 81)l?1 + bT,+ ( a  sinh el + c cosh 81)r3 (7) 

and provided that a’# c2 we may choose the tilting angle so that 

tanh el = -a /  c 

A= b r , + ( ~ ~ - a ~ ) ~ I ~ r , .  

with the result that 

k further rotation through a tilting angle 8, chosen so that 

tanh 8, = b / (  c2 - a,)”, 

(again, provided that b2 # c2 - a’) yields 
fi  = e-iezrifi e’ezr, = ( ~ 2 -  a2 - b2)1/2r3. 

Thus, the bound-state spectrum of H may be obtained by diagonalising the compact 
generator rs of SO(2, l ) .  
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If an eigenfunction of r3 is denoted by 4, the corresponding eigenfunction of H 
is given simply by e-iezrl e-ielrz@. The order of these rotations may be reversed, even 

’ ’* 
differ only in a phase factor since, from (3), [r, , r,] = -ir3 and + is an eigenfunction 
of r3. Note that, if either a or b vanishes, a single rotation suffices. 

In order to exploit this result, it is necessary to express Schrodinger’s equation in 
such a way that it becomes linear in the SO(2 , l )  generators. This is achieved most 
conveniently by employing parabolic coordinates, and in the following section we give 
a brief treatment of the unperturbed hydrogen atom in order to establish notation. The 
various perturbation problems are then solved individually in a later section. 

2 I +  and e-ie though rl and rz do not commute; the functions e-ielrz e-i6 

3. The unperturbed hydrogen atom 

As is well known, Schrodinger’s equation for a non-relativistic electron in a Coulomb 
field may be separated in parabolic coordinates (see, for example, Bethe and Salpeter 
1957). By definition, we have 

x = (6T) lI2  cos 4 z = 8 s  - q 1 y = (tT)’/’sin 4 r = & + d  (12) 

w x ,  Y ,  z )  = 77) (13) 

and if an eigenfunction is written 

and we employ the usual Hartree atomic units ( e  = m = h = l ) ,  Schrodinger’s equation 
becomes, after multiplication by a factor ( 6  + q), 

For bound states, the energy E is real and negative, and it is convenient to change the 
scale of the variables (6, q )  according to 

6 +  a6 T - ) W  CY’ -2/ E (15) 
so that (14) becomes 

We now introduce the following realisation of the generators Si ( i  = 1 ,2 ,3 )  of SO(2 , l ) :  

It is easily verified that these satisfy the commutation relations (3). The Casimir 
operator of SO(2, l )  is given by 

S2 = S;+ s:- S: = $(I - m2)  (18) 
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and the basis states which simultaneously diagonalise S2  and the compact generator 
S3 are written conventionally In, k) where n is a non-negative integer and k = ;(I mi + 1). 
Then (see, for example, Wybourne 1974) 

S21 n, k) = a( 1 - m2)l n, k )  = k( 1 - k)l n, k) 

S3ln, k ) = ( n + k ) l n ,  k) 

S+I n, k) = [ ( n + 1 )( n + 
S-1 n, k) = [ n ( n  + 2k - 1)]1/21 n - 1, k) 

n + 1, k) 

where, as usual, 

S * =  S ,  *is2 .  (20) 
If we define a similar set of generators T, ( i  = 1,2,3)  in terms of the coordinate 7, 
(16) may evidently be written 

( s ~ + T ~ - ~ ~ ) + = o  (21) 
and the two sets of generators {Si}, {Ti} together generate the S0(2,2)  Lie algebra as 
a direct sum of the underlying SO(2, l )  algebras. The direct product basis In,, k)O 
In,, k) now diagonalises the operators (S’ ,  S 3 ,  T2,  TJ so that (21) yields 

fa = ( n ,  + k) + ( n2+ k)  = n,  + n2+ Im/ + 1 = n (22) 

E,, = -1/2n2 n = l , 2 , 3  , . . . .  (23) 

say, and, in view of (15), we obtain the hydrogenic spectrum: 

As may be easily verified, the degeneracy of the nth eigenvalue is n2 and n , ,  n2 
correspond to the conventional parabolic quantum numbers (Bethe and Salpeter 1957). 

4. The hydrogen atom with perturbations 

4.1. The perturbation p z  

In parabolic coordinates, we have 

where A measures the strength of the perturbatia 
equation becomes 

[ (s3 + T3) + p (’92 - T 2 )  -fa 1 (I, = 0 

where we have written 

p = 3iAa = -21 E. 

Thus, the erturbed Schrodinger 

(26) 
After rotations involving e-islsl and e-iezT1 (which commute in this case, since the 
coordinates 5, 7 are independent), we obtain as in (11) 

[(1-p2)lI2(s3+ T ~ ) - ~ ( Y ]  exp[-i(O1S1+ e,~,)]+=o (27) 

+a = (1 - p2)’/’(  n,  + n2 + 2k) = (1 - p 2 ) l ” n  (28) 

so that 
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say (cf ( 2 2 )  above), yielding 

Thus, the energy shift is independent of the particular state In, k )  and is given exactly 
by second-order perturbation theory. This result may be understood as follows: the 
perturbation Ap, = A a/az corresponds to a simple change of the zero of energy, since 
we have 

4.2. The perturbation (r2 - z2)-' 

In this case, we have 

A 

and the perturbed Schrodinger equation becomes 

(33+ 7 3 - ; f f ) ( I / = O  (32 )  

provided that we modify the generators Si of (17) to Si (and similarly for the T i )  
simply by writing y 2  in place of m2,  where 

y 2 = m 2 + 2 A .  (33) 

& = n , + n 2 + 2 k  (34) 

In this case, no rotation is necessary and the spectrum is given by 

which is identical in form to (22 ) .  However, we now have k =+(I yI + 1) in place of 
f ( lml+  l ) ,  so that the energy spectrum is given explicitly by 

1 E = -  
2(n1+  n2+ I yI + I ) ~ '  (35) 

This result may also be derived by noting that, in spherical polar coordinates, the 
Laplacian operator contains a term -;( r2 - z2)-' a2/aq52. The effect of the perturbation 
A ( r2 - z2)-l  is to modify this operator to -:( r2 - z2)-'(a2/aq52 - 2A), with a consequential 
change in the spectrum as seen in the appearance of a new effective azimuthal quantum 
number I yI. 

4.3. The perturbation z /  r 

This operator, which may be viewed as a component of the classical Runge-Lenz vector, 
also has some features similar to the dipole operator z which is responsible for optical 
transitions and the Stark effect. In this case 
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and the perturbed Schrodinger equation takes the form 

{[(I +p)S3+Ps11+[(1 -PIT3 --p.T,I -fa}$ = 0 (37) 

where we have written 

-2/E. 1 2  p =pia 

After rotation, we have (cf. (1 1)) 

((1 +2p)l/’s3+(1 -2p)’/’T3-&} e x p [ - i ( ~ , ~ , +  e 2 ~ 2 ) ~ $  = o (39) 

fa = (1 + 2p)1/2p, + (1 - 2 p y p 2  (40) 

pi = ni +f(lml+ 1) i = 1,2. (41) 

so that 

where 

Now, if p1 = p 2  (=in, say), we obtain for the exact perturbed energy 

so that only the second-order correction to the energy is non-vanishing in this case. 
However, if p1 # p 2 ,  we have 

or, if we employ the principal quantum number n ( =pl + p 2 )  together with the parabolic 
quantum numbers n, , n2, we may write 

I 
E(n, n,, n2) = -7 {[ 1 +2An(n2- n,)] + [l  +4An(n2- nl)]1’2} 

4n 

1 
- {[1+2An(n2-n1)]-[1+4An(n2-n,)]’~2}. 

4(n2- n d  
(44) 

(This reproduces (42) when n 2 =  n,, as it should.) 

of A cannot converge unless 
From (44), we see that a perturbation expansion of the energy in ascending powers 

which is clearly state dependent. Furthermore, the energy is complex whenever 

1 
4n(n, - n2) * 

A 3  

This latter result can perhaps be best understood by noting that the complete potential 
for this problem 

1 z  
r r  

V = - - + A -  

will possess a maximum if Az> 1, leading to a potential barrier with characteristic 
tunnelling probability and metastable (complex energy) states. 
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